Archivo de la etiqueta: satélites

Destello final de la misión aeroespacial Cassini-Huygens

Tras más de una década explorando Saturno, sus anillos y satélites naturales o lunas, la misión Cassini-Huygens realizó su último servicio antes de desintegrarse en la atmósfera gaseosa de Saturno, como Crono cuando devora a sus hijos. El heroico final, como el deinos en el antiguo drama musical griego que se autodestruye al término de la obra, sacrificándose tras su acción civilizadora, se preparó desde NASA Jet Propulsion Laboratory para el viernes 15 de septiembre de 2017, tras varias prórrogas en la misión desde el año 2008 durante el equinoccio de Saturno, cuando ya se iba agotando la energía propulsora, pero evitando que la destrucción del orbitador Cassini pudiera causar daños en las lunas de Saturno donde pueda haber microorganismos vivos, dado los elementos radioactivos del generador termoeléctrico de radioisótopos que actuaba como batería del orbitador. La misión internacional Cassini-Huygens ha terminado tras 13 años de exploración alrededor del planeta Saturno, descendiendo en su atmósfera a una velocidad de 35 km/s y con una inclinación de 15 grados, desintegrándose en las capas superiores a toda mecha. La pérdida de contacto tuvo lugar a las 11:55 UTC, según ha confirmado la NASA al recibir la última comunicación en la antena de Camberra, Australia, que captaba las señales de onda desde el espacio exterior.

misión Cassini-Huygens en Saturno
Ilustración de la nave Cassini de la NASA sobre el hemisferio norte de Saturno, dirigiéndose hacia su primera inmersión entre el planeta y sus anillos en abril de 2017.

«Este es el capítulo final de una misión asombrosa, pero también es un nuevo comienzo», declaró Thomas Zurbuchen, administrador asociado de la Dirección de Misión Científica de la NASA. «La detección por parte de la misión Cassini-Huygens de océanos y lagos subterráneos en Titán y Encélado cambió todo, dirigiendo nuestra mirada a lugares sorprendentes donde buscar vida potencial más allá de la Tierra».

Cassini-Huygens NASA Jet Propulsion LaboratoryEarl Maize, director del programa Cassini de la NASA en el Jet Propulsion Laboratory, y Julie Webster, gerente de operaciones de la misión Cassini-Huygens, junto a todo el equipo de la agencia aeroespacial estadounidense que trabajó en la última fase de la investigación y la inmersión final del orbitador en la atmósfera de Saturno donde se inmoló evitando dejar radiaciones sobre la superficie de las lunas. Fuente: NASA / Joel Kowsky.

Cassini-Huygens fue un programa internacional fruto de la cooperación entre la NASA (Administración Nacional de Aeronáutica y del Espacio de Estados Unidos), la ESA (Agencia Aeroespacial Europea) y la ASI (Agencia Aeroespacial Italiana), junto con investigadores, académicos e industriales de 19 países. La dirección de la última parte de la misión ha estado guiada por la agencia aeroespacial estadounidense, quien más presupuesto económico y recursos había puesto. El orbitador Cassini fue construido por la NASA / Jet Propulsion Laboratory, la sonda Huygens fue fabricada por la Agencia Espacial Europea (ESA), mientras que la Agencia Espacial Italiana se encargó de proporcionar la antena de comunicación de alta ganancia. El coste total de la misión Cassini-Huygens fue de 3260 millones de dólares, de los cuales Estados Unidos aportó 2600 millones, la Agencia Espacial Europea 500 millones y la Agencia Espacial Italiana 160 millones.

Entre abril y septiembre de 2017, cuando ya se estaba agotando la energía del generador termoeléctrico de radioisótopos y estaba planificada la terminación de la misión, el orbitador tuvo tiempo para seguir realizando vuelos de pasada e inmersiones semanales a través del espacio de 2.000 km que separa Saturno de sus anillos, aprovechando el final de la vida útil del artefacto para seguir estudiando Saturno lo más cerca posible. Ocho de los instrumentos del orbitador Cassini (CDA, analizador de polvo cósmico, CIRS, espectrómetro de luz infraroja, INMS, espectrómetro de masa neutral e iónica, MAG, magnetómetro dual, MIMI, instrumento de imagen magnetosférico, RPWS, instrumento de ondas de radio y plasma, RSS, subsistema radiotelescópico, UVIS, espectrógrafo ultravioleta) han recopilado datos durante la inmersión final en Saturno, transmitiéndolos a la Tierra con poco desfase temporal. Las señales de radio tardan unos 83 minutos en atravesar los 1.400 millones de kilómetros que separan el planeta Tierra de Saturno. Justo antes de la inmersión abrasiva que desintegró el orbitador, estos instrumentos dedicados a la medición del campo electromagnético, el plasma, el gas y las partículas de los anillos han estado operativos porque este final ofrece, según Nicolas Altobelli, científico de proyecto de la Agencia Aeroespacial Europea en la misión Cassini-Huygens, “una oportunidad única para medir con detalle los campos magnético y gravitatorio de Saturno, lo que ayudará a entender mejor su estructura interna”.

Aún con todos los hallazgos entregados desde que la aeronave no tripulada llegara a Saturno en el año 2004 y comenzara a rastrear Titán mediante la sonda Huygens, quedan todavía incógnitas que resolver. Todavía no se ha determinado el grado de inclinación del campo magnético de Saturno con el eje de rotación del planeta, ni se ha aclarado la datación de Saturno, sus anillos y los satélites o lunas. El orbitador Cassini tomó mediciones de las partículas y la masa en los anillos para determinar si su formación es cronológicamente posterior al planeta.

misión Cassini-Huygens en Saturno
Ilustración de la nave Cassini de la NASA adentrándose el 15 de septiembre de 2017 en la atmósfera de Saturno. Fuente: NASA / JPL-Caltech.

“Cassini revolucionó nuestros conocimientos sobre Saturno en el momento en que llegó al planeta y ha continuado haciéndolo durante 13 años, hasta su último día”, aseguró Álvaro Giménez, director de ciencia de la Agencia Aeroespacial Europea.

“La misión nos ha inspirado con sus prodigiosas imágenes, incluyendo la lección de humildad que nos dan las vistas a lo largo de más de mil millones de kilómetros de distancia hasta el minúsculo punto azul que constituye nuestro planeta”, comenta Altobelli, alabando «este viaje pionero, que nos deja un rico legado de ciencia e ingeniería».

La aeronave no tripulada llevaba 12 instrumentos científicos en el orbitador Cassini y 6 instrumentos en la sonda Huygens, principalmente espectrómetros de mapeo por luz infrarroja y ultravioleta, sistemas de imagen, radio, instrumentos de medición de masa, estructura atmosférica, composición de partículas cósmicas e imagen magnetosférica, con los que investigadores de varios países en la misión aeroespacial Cassini-Huygens han logrado acumular imágenes, mediciones atmosféricas y nuevos cálculos de su campo magnético y gravitacional, como del periodo de rotación del planeta Saturno, las órbitas de sus satélites y hallazgos determinantes al mapear la superficie de Titán y la posibilidad de encontrar agua líquida en la luna Encélado.

Lanzada el 15 de octubre de 1997 desde Cabo Cañaveral al noreste de Florida, Estados Unidos, la aeronave Cassini-Huygens llegó a la órbita de Saturno el 30 de junio de 2004, separando la sonda que aterrizó en Titán el 14 de enero de 2005, convirtiéndose en la primera aeronave en aterrizar sobre un cuerpo celeste del sistema solar exterior. En Titán se analizó la presencia de gas metano y temperaturas gélidas de unos -180 grados Celsius. En Encélado se detectaron aguas subterráneas de extensión oceánica bajo la superficie helada y en su polo sur hay actividad volcánica con géiseres que expulsan chorros hacia la bruma.

La denominada Grand Finale supuso la última prórroga de la misión Cassini-Huygens para hacerla coincidir con el solsticio en Saturno, antes de decidir su final, valorando distintas opciones. Se descartó estrellar el orbitador en una trayectoria a través del plano ecuatorial del planeta, para evitar la colisión con las partículas de los anillos. Tampoco era viable estrellar el orbitador contra alguno de sus satélites naturales, como las lunas Titán y Encélado, dado que la propulsión que llevaba era energía nuclear, mediante generadores termoeléctricos de radioisótopos, que dejarían contaminación por residuos nucleares en la superficie donde podría haber microorganismos vivos por haber encontrado agua. Tras descartar dejar el artefacto aeronáutico en órbita estacionaria o hacerla salir de órbita para que se perdiera en el espacio exterior, se tomó la decisión de inmolarlo entre la atmósfera de Saturno y el anillo D, a través del espacio de 3800 kilómetros, precipitándose en su atmósfera el día 15 de septiembre de 2017 a las 11:55 UTC.

Deimos 1, satélite espacial y vigilante medioambiental

Deimos 1 se convirtió el pasado 29 de julio del 2009 en el primer satélite espacial puesto en órbita por una compañia privada española, DEIMOS Imaging empresa para el diseño, implementación, operaciones y explotación de un sistema espacial completo de Observación de la Tierra. Su director general Pedro Duque, primer astronauta español, junto con un equipo de profesionales muy cualificados a nivel técnico en ingeniería, desarrollan sistemas de teledetección. Desde la página de la compañia Deimos Imaging se pueden ver datos sobre el desempeño del satélite y algunas imágenes tomadas desde el espacio de diversas zonas del planeta Tierra.

satélite Deimos 1

Deimos-1 posee un sensor óptico multiespectral con una resolución de 22 m y un amplio barrido de más de 600 km, sus dimensiones son de 63 x 63 centímetros de tipo cúbico y cerca de 90 kilos de peso. El satélite graba a bordo las imágenes de la Tierra para su posterior volcado en la estación de seguimiento de satélites propia situada en el Parque Tecnológico de Boecillo (Valladolid). Deimos Imaging desarrolló el nuevo satélite en colaboración con Surrey Satellite Technology Limited (SSTL) con base en Guildford (Reino Unido), empresa líder en la construcción de pequeños satélites.

Las placas solares que pueden verse en el exterior del satélite en los laterales, sirven para aprovechar la incidencia de rayos solares y abastecerse de energía, las seis cámaras de la parte inferior toman las imágenes y las antenas transmiten estas imágenes a la estación de control. El Deimos-1 está en órbita a 680 kilómetros de altura sobre la superficie terrestre, sobrevolando los polos, va tomando imágenes en el rango visible del espectro de longitudes de onda y en infrarrojo, de una franja de la Tierra de unos 600 kilómetros de ancho, con una resolución de de hasta 20 metros.

El satélite tiene zonas preferentes de barrido y análisis, como son España, y especialmente la región de Castilla y León donde está ubicado el sistema, Portugal, donde la empresa Deimos Engenharia contribuirá a la explotación comercial del mismo y el resto de Europa, donde pretende contribuir al despliegue del programa GMES (Global Monitoring Environment and Security) de la ESA y la Unión Europea.

El satélite está integrado en la constelación internacional DMC (Disaster Monitoring Constellation) que está formada por satélites del Reino Unido, China, Nigeria, Argelia y Turquía, fabricados asimismo por SSTL. El uso combinado de los satélites de esta constelación proporciona una capacidad única de observación de la Tierra, con más de una visita diaria a cualquier lugar del globo. Cada miembro del consorcio posee y opera su propio satélite, mientras co-opera la constelación junto con el resto de países miembros. Este modelo de co-operación permite que la información generada por un satélite pueda ser utilizada por los otros miembros del consorcio.

satélite Deimos 1

El satélite Deimos-1 sirve para dar apoyo a la planificación de riegos, controlar la explotación de los acuíferos, el seguimiento de una sequía, la localización de daños por heladas o granizo, detectar vertidos y áreas inundables, analizar el éxito de la regeneración de áreas quemadas, la detección de incendios forestales o de plagas y la localización de embarcaciones. Con las imágenes se elaboran cartografías donde se analiza la vegetación, el riesgo de incendio, inundación y se ayuda en la agricultura y en definitiva al medio ambiente. El color verde intenso es un buen estado de vegetación, amarillo es moderado, y naranja o rojo son los niveles peores y con mayor posibilidad de incendio.

imágenes satélite Deimos 1

«Queremos proporcionar a los clientes no sólo imágenes, sino información directamente útil sobre, por ejemplo, las necesidades de nutrientes y de agua de los cultivos, indicando al agricultor cuándo, dónde y cuánto abonar», ha explicado Duque. «También podremos proporcionar datos acerca de incendios forestales o de la cobertura vegetal del territorio y su degradación». Para él son especialmente interesantes las repercusiones positivas para el medio ambiente que puede proporcionar el Deimos-1, desde esa reducción del abonado o la optimización del riego para evitar el derroche de agua, hasta el control de la deforestación o la vigilancia de vertidos contaminantes.

«Hace 40 años, cuando el hombre llegó a la Luna, había mucha ilusión pensando que se iba a revolucionarlo todo», ha comentado Duque a propósito del 40 aniversario (el día 16 de julio) del lanzamiento del Apollo 11. «Realmente, hoy en día todo el mundo está informado inmediatamente de lo que ocurre en todo el mundo gracias a los satélites de telecomunicaciones, que han sido una revolución; y mucha gente lleva en el bolsillo un receptor espacial, un sistema de localización por satélite, con el que viajamos sin perder tiempo en buscar a dónde vamos. Pero la revolución actual es la de las aplicaciones de observación de la Tierra: sólo desde el espacio se puede observar todo el planeta, por ejemplo los parámetros del cambio climático, o la vigilancia medioambiental. También es una revolución para la agricultura, porque puede ayudar mucho a mejorar la rentabilidad de los cultivos».

imágenes satélite Deimos 1

«Está pensado para ser útil para la parcela española normal. No es un satélite espía diseñado ver la matrícula de los vehículos del enemigo, sino para aplicaciones de observación de la Tierra», comenta Duque. Las instituciones como la UE, a través de la Agencia Europea del Espacio (ESA), están ya en la cartera de clientes de Deimos Imaging, pero la empresa cuenta con que su producto, los informes que sus expertos pueden elaborar a partir de las imágenes del satélite y de modo casi inmediato, sirvan también a muchos agricultores privados, además de organismos como municipios, comunidades autónomas y otros organismos.

Evidentemente el papel del satélite y de los técnicos aeroespaciales es solamente una parte, los ingenieros aeronáuticos indican a otros profesionales, gracias a las imágenes del satélite, como es más conveniente actuar, por ejemplo, indican a los agricultores donde invertir en regadío, donde suministrar abono para mejorar la cosecha, como también indican a los guardias forestales, a las cuadrillas de limpieza de bosques y a las brigadas de extinción de incendios como deben coordinarse para proteger la vegetación de una zona.

«Nuestro sistema de observación de la Tierra incluye, además del satélite, la estación de seguimiento y todo el grupo de expertos, en colaboración con el Laboratorio de Teledetección de la Universidad de Valladolid, capaces de preparar los informes requeridos por cada cliente a partir de las imágenes del Deimos-1«, explica Duque. En Francia, por ejemplo, centenares de miles de hectáreas de cultivo están siendo explotadas con provecho gracias a la información de satélites, si los fertilizantes suponen un porcentaje significativo del coste de la cosecha y se pueden reducir en un 50%, la rentabilidad económica del servicio del satélite es obvia.